Wavelet frame denoising

This example illustrates image denoising using a frame defined by a combination of an orthonormal discrete wavelet transform (ODWT) and "cycle-spinning" operators, using the Julia language.

This page comes from a single Julia file: frame-cycle.jl.

You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in nbviewer here: frame-cycle.ipynb, or open it in binder here: frame-cycle.ipynb.

Setup

Add the Julia packages used in this demo. Change false to true in the following code block if you are using any of the following packages for the first time.

if false
    import Pkg
    Pkg.add([
        "InteractiveUtils"
        "LaTeXStrings"
        "LinearAlgebra"
        "LinearMapsAA"
        "MIRT"
        "MIRTjim"
        "Plots"
        "Random"
        "Statistics"
    ])
end

Tell Julia to use the following packages. Run Pkg.add() in the preceding code block first, if needed.

using ImagePhantoms: circle, phantom
using InteractiveUtils: versioninfo
# using LaTeXStrings
using LinearAlgebra: norm
using LinearMapsAA: LinearMapAA
using MIRT: Aodwt #, pogm_restart
using MIRTjim: jim, prompt
using Plots: default, gui, plot, savefig
using Random: seed!
default(); default(markerstrokecolor=:auto, label = "", markersize=6,
 tickfontsize = 9, labelfontsize = 16, titlefontsize = 16)

The following line is helpful when running this file as a script; this way it will prompt user to hit a key after each image is displayed.

isinteractive() && prompt(:prompt);

Generate test image

Both clean and noisy image.

if !@isdefined(ydata)
    nx, ny = 144, 128 # multiples of 2^3 for wavelet code
    ob = circle(40f0, 6f0)
    x = (1:nx) .- (nx-1)/2
    y = (1:ny) .- (ny-1)/2
    oversample = 3
    xtrue = phantom(x, y, [ob], oversample)
    seed!(0)
    ydata = xtrue + 0.7f0 * randn(Float32, nx, ny)
    nrmse = (xh) -> round(norm(xh - xtrue) / norm(xtrue) * 100, digits=1)
end;

clim = (-2, 8)
clim = (-1, 7)
py = jim(
 jim(xtrue; clim, title="True Image"),
 jim(ydata; clim, xlabel="NRMSE=$(nrmse(ydata))%", title="Noisy Image"),
 size = (800, 350),
)
# savefig(py, "frame-cycle-py.pdf")
Example block output

Orthogonal discrete wavelet transform operator (LinearMapAO):

W, scales, _ = Aodwt((nx,ny) ; T = eltype(ydata), level = 3)
scales = Int.(scales)
isdetail = scales .> 0
pw = jim(
   jim(scales, "wavelet scales"; color=:viridis),
   jim(real(W * xtrue) .* isdetail, "wavelet detail coefficients";
       color=:cividis),
   size = (800, 320),
)
Example block output

ODTW denoising

This simply uses soft thresholding, the proximal operator for the 1-norm.

Define proximal operator so that it shrinks only the detail coefficients:

soft = (z,c) -> sign(z) * max(abs(z) - c, 0) # soft thresholding
reg = 0.9 # hand-tuned for small NRMSE
g_prox = (z,c) -> soft.(z, isdetail .* (reg * c))

# Apply wavelet coefficient soft thresholding
coef = W * ydata
xhat1 = W' * g_prox(coef, 1)
jim(coef)
p1 = jim(xhat1; clim, xlabel="NRMSE=$(nrmse(xhat1))%", title="ODWT denoised")
Example block output

The NRMSE is reduced substantially, but there are severe "block" artifacts due to the dyadic decomposition of the ODWT.

Frame approach

Define a frame based on combining ODWT with $K$ circshift operations. The analysis operator is

\[\mathbf{T} = \frac{1}{\sqrt{K}} \begin{bmatrix} \mathbf{W} \mathbf{P}_1 \\ \mathbf{W} \mathbf{P}_2 \\ \vdots \\ \mathbf{W} \mathbf{P}_K \end{bmatrix}\]

where $\mathbf{P}_0 = \mathbf{I}$ and where each $\mathbf{P}_k$ is a circshift operator.

# Define circshift permutation map
Pforw = shifts -> (x -> circshift(x, shifts))
Pback = shifts -> (y -> circshift(y, -1 .* shifts))
Pmap = shifts -> LinearMapAA(Pforw(shifts), Pback(shifts), (nx*ny,nx*ny);
    odim=(nx,ny), idim=(nx,ny), T=Float32, prop=(; shifts, name="shift"))

p12 = Pmap((1,2))
@assert p12' * (p12 * ydata) ≈ ydata # check Pmap

# tmp = W * p12
# tmp * xtrue # todo fails!?
# Top = vcat([W * Pmap((xs,ys)) for xs in shifts, ys in shifts]...)

# Define Parseval tight frame analysis operator
shifts = -3:3
Pmaps = [Pmap((xs,ys)) for xs in shifts, ys in shifts]
K = length(Pmaps)
Tforw = x -> stack(k -> (W * (Pmaps[k] * x)) / sqrt(K), 1:K, dims=3)
Tback = y -> sum(k -> Pmaps[k]' * (W' * y[:,:,k]), 1:K) / sqrt(K)
Top = LinearMapAA(Tforw, Tback, (nx*ny*K, nx*ny);
    odim=(nx,ny,K), idim=(nx,ny), T=Float32, prop=(; name="Top"))

# Sanity check that the operator satisfies the tight frame condition:
@assert Top' * (Top * ydata) ≈ ydata

Parseval tight frame (PTF) denoising

The tight frame approach leads to lower NRMSE and reduces the block artifacts.

todo: describe cost functions and implement POGM

xhat2 = Top' * g_prox(Top * ydata, 0.2) # todo: hand-tuned again
p2 = jim(xhat2; clim, xlabel="NRMSE=$(nrmse(xhat2))%", title="PTF denoised")
pf = jim(p1, p2; size=(800,350))

# savefig(pf, "frame-cycle-pf.pdf")
Example block output

Reproducibility

This page was generated with the following version of Julia:

using InteractiveUtils: versioninfo
io = IOBuffer(); versioninfo(io); split(String(take!(io)), '\n')
11-element Vector{SubString{String}}:
 "Julia Version 1.11.1"
 "Commit 8f5b7ca12ad (2024-10-16 10:53 UTC)"
 "Build Info:"
 "  Official https://julialang.org/ release"
 "Platform Info:"
 "  OS: Linux (x86_64-linux-gnu)"
 "  CPU: 4 × AMD EPYC 7763 64-Core Processor"
 "  WORD_SIZE: 64"
 "  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)"
 "Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)"
 ""

And with the following package versions

import Pkg; Pkg.status()
Status `~/work/book-la-demo/book-la-demo/docs/Project.toml`
  [6e4b80f9] BenchmarkTools v1.5.0
  [aaaa29a8] Clustering v0.15.7
  [35d6a980] ColorSchemes v3.27.1
⌅ [3da002f7] ColorTypes v0.11.5
⌃ [c3611d14] ColorVectorSpace v0.10.0
  [717857b8] DSP v0.7.10
  [72c85766] Demos v0.1.0 `~/work/book-la-demo/book-la-demo`
  [e30172f5] Documenter v1.7.0
  [4f61f5a4] FFTViews v0.3.2
  [7a1cc6ca] FFTW v1.8.0
  [587475ba] Flux v0.14.25
  [a09fc81d] ImageCore v0.10.4
  [71a99df6] ImagePhantoms v0.8.1
  [b964fa9f] LaTeXStrings v1.4.0
  [7031d0ef] LazyGrids v1.0.0
  [599c1a8e] LinearMapsAA v0.12.0
  [98b081ad] Literate v2.20.1
  [7035ae7a] MIRT v0.18.2
  [170b2178] MIRTjim v0.25.0
  [eb30cadb] MLDatasets v0.7.18
  [efe261a4] NFFT v0.13.5
  [6ef6ca0d] NMF v1.0.3
  [15e1cf62] NPZ v0.4.3
  [0b1bfda6] OneHotArrays v0.2.5
  [429524aa] Optim v1.10.0
  [91a5bcdd] Plots v1.40.9
  [f27b6e38] Polynomials v4.0.11
  [2913bbd2] StatsBase v0.34.3
  [d6d074c3] VideoIO v1.1.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [37e2e46d] LinearAlgebra v1.11.0
  [44cfe95a] Pkg v1.11.0
  [9a3f8284] Random v1.11.0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`

This page was generated using Literate.jl.