Low-Rank Selection via Cross Validation
This example illustrates low-rank matrix approximation using cross-validation methods for rank parameter selection, using the Julia language. As discussed by Owen & Perry, 2009, separate row or column hold-out is ineffective, whereas Bi-Cross-Validation (BCV) is more effective.
This page comes from a single Julia file: lr-cv.jl
.
You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in nbviewer here: lr-cv.ipynb
, or open it in binder here: lr-cv.ipynb
.
Setup
Add the Julia packages used in this demo. Change false
to true
in the following code block if you are using any of the following packages for the first time.
if false
import Pkg
Pkg.add([
"InteractiveUtils"
"LaTeXStrings"
"LinearAlgebra"
"MIRTjim"
"Plots"
"Random"
])
end
Tell Julia to use the following packages. Run Pkg.add()
in the preceding code block first, if needed.
using InteractiveUtils: versioninfo
using LaTeXStrings
using LinearAlgebra: svd, svdvals, Diagonal, norm, pinv
using MIRTjim: prompt
using Plots: default, gui, plot, plot!, scatter!, savefig
using Random: seed!, randperm
using Statistics: mean
default(); default(label="", markerstrokecolor=:auto, markersize=7,
labelfontsize=20, tickfontsize=16, legendfontsize=17, widen=true)
The following line is helpful when running this jl-file as a script; this way it will prompt user to hit a key after each image is displayed.
isinteractive() && prompt(:prompt);
Generate data
Noiseless low-rank matrix and noisy data matrix
M, N = 100, 50 # problem size
seed!(0)
Ktrue = 5 # true rank (planted model)
X = svd(randn(M,Ktrue)).U * Diagonal(1:Ktrue) * svd(randn(Ktrue,N)).Vt
sig0 = 0.03 # noise standard deviation
Y = X + sig0 * randn(size(X)) # noisy
sy = svdvals(Y)
sx = svdvals(X)
sx[1:Ktrue]
5-element Vector{Float64}:
5.0
4.000000000000003
3.0
2.0
0.9999999999999997
sy[1:Ktrue]
5-element Vector{Float64}:
5.023759688280403
4.051459702189543
3.0061483656272916
1.9979253120833067
1.1124738202874183
Plot singular values
ps = plot(xaxis = (L"k", (1,N), [1, Ktrue, N]), yaxis = (L"σ", (0,5.5), 0:5))
scatter!(1:N, sy, color=:red, marker=:hexagon,
label=L"\sigma_k(Y) \ \mathrm{noisy}")
scatter!(1:N, sx, color=:blue, label=L"\sigma_k(X) \ \mathrm{noiseless}")
prompt()
# savefig(ps, "lr_sure1s.pdf")
Low-rank approximation with various ranks
(U, sy, V) = svd(Y)
nrmse_K = zeros(N)
nrmsd_K = zeros(N)
nrmsd = (D) -> norm(D) / norm(Y) * 100
nrmse = (D) -> norm(D) / norm(X) * 100
for K in 1:N
Xh = U[:,1:K] * Diagonal(sy[1:K]) * V[:,1:K]'
nrmsd_K[K] = nrmsd(Xh - Y)
nrmse_K[K] = nrmse(Xh - X)
end
nrmsd_K = [nrmsd(0 .- Y); nrmsd_K]
nrmse_K = [nrmse(0 .- X); nrmse_K]
klist = 0:N;
Plot normalized root mean-squared error/difference versus rank K
pk = plot( # legend=:outertop,
xaxis = (L"K", (1,N), [0, 2, Ktrue, N]),
yaxis = ("'Error' [%]", (0, 100), 0:20:100),
)
scatter!(klist, nrmse_K, color=:blue,
label=L"\mathrm{NRMSE\ } ‖ \! \hat{X}_K - X \ ‖_{\mathrm{F}} / ‖X \ ‖_{\mathrm{F}} \cdot 100\%",
)
scatter!(klist, nrmsd_K, color=:red, marker=:diamond,
label=L"\mathrm{NRMSD\ } ‖ \! \hat{X}_K - Y \ ‖_{\mathrm{F}} / ‖Y \ ‖_{\mathrm{F}} \cdot 100\%",
)
prompt()
# savefig(pk, "lr_sure1a.pdf")
Bi-cross-validation code
"""
bcv(Y::AbstractMatrix{<:Number}, ranks=1:10)
Compute bi-cross-validation per
https://doi.org/10.1214/08-AOAS227
"""
function bcv(Y::AbstractMatrix{<:Number}, ranks=1:10, fold::Int=2)
M, N = size(Y)
any(>(min(M,N)), ranks) && throw("bad ranks")
any(<(0), ranks) && throw("bad ranks")
H1 = M÷fold # hold-out rows
H2 = N÷fold # hold-out columns
perm1 = randperm(M)
hold1 = perm1[1:H1]
keep1 = perm1[(H1+1):M]
perm2 = randperm(N)
hold2 = perm2[1:H2]
keep2 = perm2[(H2+1):N]
A = Y[hold1,hold2]
B = Y[hold1,keep2]
C = Y[keep1,hold2]
D = Y[keep1,keep2]
U,s,V = svd(D)
error = zeros(length(ranks))
for (i, r) in enumerate(ranks)
Dr_pinv = V[:,1:r] * Diagonal(pinv.(s[1:r])) * U[:,1:r]'
error[i] = norm(A - B * Dr_pinv * C)
end
return error / norm(A) * 100
end;
Apply BCV to synthetic data
In this example, (2×2)-fold BCV is minimized at the correct rank of 5.
fold = 2
ranks = 0:min(M,N)÷fold
cv = bcv(Y, ranks, fold)
scatter!(pk, ranks, cv, color=:green, marker=:star,
label=L"\mathrm{BCV}",
)
i_bcv = argmin(cv)
scatter!([ranks[i_bcv]], [cv[i_bcv]], color=:black, marker=:star, markersize=4,)
prompt()
# savefig(psk, "lr_bcv1.pdf")
Compare with row or column hold-out CV
"""
function lr_cross_validation_by_column(Y, fold, n_components)
"""
function lr_cross_validation_by_column(
X::AbstractMatrix{<:Number},
fold::Int,
n_components::AbstractVector{<:Int},
)
n_samples = size(X, 2) # Assuming columns are samples
fold_size = n_samples ÷ fold
errors = zeros(length(n_components), fold)
for fold_idx in 1:fold
test_indices = ((fold_idx - 1) * fold_size + 1):min(fold_idx * fold_size, n_samples)
train_indices = setdiff(1:n_samples, test_indices)
X_train = X[:, train_indices]
X_test = X[:, test_indices]
U, _, _ = svd(X_train) # "PCA" of training data
for (comp_idx, n_component) in enumerate(n_components)
Ur = U[:,1:n_component]
X_test_reconstructed = Ur * (Ur' * X_test)
errors[comp_idx, fold_idx] = # calculate reconstruction error
norm(X_test - X_test_reconstructed) / norm(X_test)
end
end
return errors * 100
end;
Apply elementary CV to same noisy data
Holding out rows or columns leads to highly over-estimated ranks, as predicted in the literature.
This is the approach recommended by GPT 4.1 (circa 2025-08), presumably because holding out individual data points is prevalent in machine learning.
fold = 5
Kmax = min(M,N)÷fold
n_components = 0:Kmax
errors_by_col = lr_cross_validation_by_column(Y, fold, n_components)
error_means_by_col = vec(mean(errors_by_col, dims=2))
i_col = argmin(error_means_by_col) # best based on minimum mean error
errors_by_row = lr_cross_validation_by_column(Y', fold, n_components)
error_means_by_row = vec(mean(errors_by_row, dims=2));
i_row = argmin(error_means_by_row) # best based on minimum mean error
optimal_k_col = n_components[i_col]
optimal_k_row = n_components[i_row]
pcv = plot(
xlims=(0,10),
xticks=[0, 1, 5, 10],
ylims=(0,100),
widen = true,
xlabel = "rank",
ylabel = "NRMSD",
)
scatter!(n_components, error_means_by_col, label="by column")
scatter!(n_components, error_means_by_row, label="by row", marker=:x)
scatter!([n_components[i_col]], [error_means_by_col[i_col]],
color=:black, marker=:circle, markersize=4, )
scatter!([n_components[i_row]], [error_means_by_row[i_row]],
color=:black, marker=:x, markersize=4, )
Reproducibility
This page was generated with the following version of Julia:
using InteractiveUtils: versioninfo
io = IOBuffer(); versioninfo(io); split(String(take!(io)), '\n')
11-element Vector{SubString{String}}:
"Julia Version 1.11.6"
"Commit 9615af0f269 (2025-07-09 12:58 UTC)"
"Build Info:"
" Official https://julialang.org/ release"
"Platform Info:"
" OS: Linux (x86_64-linux-gnu)"
" CPU: 4 × AMD EPYC 7763 64-Core Processor"
" WORD_SIZE: 64"
" LLVM: libLLVM-16.0.6 (ORCJIT, znver3)"
"Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)"
""
And with the following package versions
import Pkg; Pkg.status()
Status `~/work/book-la-demo/book-la-demo/docs/Project.toml`
[6e4b80f9] BenchmarkTools v1.6.0
[aaaa29a8] Clustering v0.15.8
[35d6a980] ColorSchemes v3.30.0
⌅ [3da002f7] ColorTypes v0.11.5
⌃ [c3611d14] ColorVectorSpace v0.10.0
[717857b8] DSP v0.8.4
[72c85766] Demos v0.1.0 `~/work/book-la-demo/book-la-demo`
[e30172f5] Documenter v1.14.1
[4f61f5a4] FFTViews v0.3.2
[7a1cc6ca] FFTW v1.9.0
[587475ba] Flux v0.16.5
[a09fc81d] ImageCore v0.10.5
[71a99df6] ImagePhantoms v0.8.1
[b964fa9f] LaTeXStrings v1.4.0
[7031d0ef] LazyGrids v1.1.0
[599c1a8e] LinearMapsAA v0.12.0
[98b081ad] Literate v2.20.1
[7035ae7a] MIRT v0.18.2
[170b2178] MIRTjim v0.25.0
[eb30cadb] MLDatasets v0.7.18
[efe261a4] NFFT v0.13.7
[6ef6ca0d] NMF v1.0.3
[15e1cf62] NPZ v0.4.3
[0b1bfda6] OneHotArrays v0.2.10
[429524aa] Optim v1.13.2
[91a5bcdd] Plots v1.40.19
[f27b6e38] Polynomials v4.1.0
[2913bbd2] StatsBase v0.34.6
[d6d074c3] VideoIO v1.3.0
[b77e0a4c] InteractiveUtils v1.11.0
[37e2e46d] LinearAlgebra v1.11.0
[44cfe95a] Pkg v1.11.0
[9a3f8284] Random v1.11.0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
This page was generated using Literate.jl.